做牙工作网站个人建站赚钱

张小明 2026/1/12 21:46:35
做牙工作网站,个人建站赚钱,WordPress加2Dli,网站的建设 教学计划Transformer是现代大语言模型的基石#xff0c;由Encoder和Decoder组成。Encoder通过词向量、位置编码、自注意力机制和前馈网络处理输入#xff0c;捕捉词间关系#xff1b;Decoder则通过掩码多头注意力生成输出#xff0c;并与Encoder交互。其多头注意力机制允许模型从多…Transformer是现代大语言模型的基石由Encoder和Decoder组成。Encoder通过词向量、位置编码、自注意力机制和前馈网络处理输入捕捉词间关系Decoder则通过掩码多头注意力生成输出并与Encoder交互。其多头注意力机制允许模型从多个角度理解文本残差连接确保训练稳定。这种架构使模型能够高效并行处理长序列成为ChatGPT等大语言模型的基础。如果你想对当下 AI LLM(大语言模型) 的工作原理有所了解揭开 ChatGPT、DeepSeek 背后的秘密那一定要认识一下本文的主角 Transformer。当提起 Transformer 这个话题时仿佛人人都可以讲些相关名词出来什么自注意力机制啊、encoder、decoder什么的但若深入追问细节却很少有人能真正地说清楚。它最初来自一篇被称为“AI 大航海时代起点”的论文Attention is All You Need这篇论文首次提出的 Transformer 架构已经成为当下所有大模型的基础。今天我们就从这篇最初的论文出发真正理解下 Transformer 究竟是何方神圣。本文不讨论公式只解读图表旨在让更多读者看完就能通俗地、成体系地给身边其他人讲清楚 Transformer 工作原理从而真正理解它究竟为什么如此火爆。首先先引用这篇论文中的关于 Transformer 这个模型的整体架构图上来直接就看架构图是不是有些晕没关系下面我们就来一步步通俗理解下这张架构图的深层含义。图的左边一侧Input输入整体代表Encoder右边一侧Output输出整体代表Decoder。01输入是怎么被 Transformer“看懂”的整个输入流程你只需要先记住下面的关键流程词 → 向量 → 加位置 → Q/K/V → 注意力 → FFN → 输出然后我们来一点一点看。① Input Embedding把词变成数字向量模型不认识“我”、“你”、“猫”这些词只能接受数字。所以需要把每个词转换成一个向量也就是一组数字例如我 → [0.12, -0.88, 0.43, …]这里简化了精度方便阅读向量化这一步非常基础但也是理解后面一切的起点。② Positional Encoding给模型装上“位置感”Transformer 没有像传统 RNN 那样按顺序逐词处理输入因此模型本身无法“天然”感知词的先后关系。所以需要额外告诉模型“这是第 1 个词这是第 2 个词……”论文使用了 sin cos 函数计算的位置编码方式让每个词清楚自己的“位置”。sin/cos 位置编码乍一看有点数学味但对模型来说是非常简单高效的。它像给每个位置贴上一段独一无二的“节奏标签”让 Transformer 能分辨词的“位置”同时又不需要多余的训练成本。③ Q / K / VSelf-Attention 的灵魂这是最让人拍案叫绝的设计之一。句子中的每个词都会生成 3 个向量QQuery我想找什么KKey我是谁我有什么特征VValue我的实际含义是什么它们不是概念而是实实在在的矩阵乘法结果。接下来句子里的每个词都会拿着自己的 Q 到其他词的 K 那里去“打分”问“你跟我有多相关”打分越高就越关注这个词。最后对 V 进行加权求和得到“新含义”。这就是单一的 Self-Attention。02为什么需要 Multi-Head Attention有了单一的 Self-Attention为啥又需要 Multi-Head Attention 呢因为我们需要从多个角度来理解自然语言。注意力头的数量是一个超参Hyperparameter每个注意力头可以关注不同的视角例如有些头专注于主谓关系有些头捕捉代词指代有些头看句子情感有些头看名词短语边界有些头看长距离依赖有些头捕捉句法树结构…Transformer 不是只看一个角度论文中的例子是并行开 8 个注意力头。实际可以开12 个、48 个甚至更多的注意力头从更多视角扫描句子。下图是论文最后给出的一个简单示例描述了针对同一段文字两个不同的注意力头所展现出的各自关系可以看到确实存在明显区别这就是 Multi-Head Attention 的直观体现。03残差连接 LayerNorm让训练更稳定Self-Attention 只是“加工”了一遍词向量但我们肯定还不能丢掉原始信息。于是原始输入 注意力结果 → 做 LayerNorm 归一化对应架构图中 Add Norm这个残差结构让训练稳定得多也能堆更多层。04Feed Forward 网络FFN进一步加工语义Attention层负责广撒网把相关信息搜集到一起FFN则负责深加工对这个信息进行更复杂、更深度的非线性变换。又晕了其实通俗来讲就是Attention 负责找关系FFN 负责提升表达力。论文中描述FFN的关键内容参考如下简单理解它就是一个非常朴素的两层全连接网络Linear → ReLU → LinearFFN 的结果是让每个 token 得到更丰富、更抽象的特征表达这样模型才能表达更复杂的模式而不仅仅是做简单的线性组合。05重复 N 次论文是 6 层可以加更多论文里 EncoderNx这里是堆了 6 层。但这其实也是一个 超参Hyperparameter。后来的 BERT、GPT、Llama 都堆到了几十层甚至上百层。一般来讲层数越多、模型越大、理解力越强。这其实也是模型训练堆GPU能“大力出奇迹”的理论基础。06Decoder 如何像人一样“输出”内容Decoder是模型的“写作器”其工作严格遵循架构图右侧流程核心是 “从左到右逐词生成”。为了理解这个过程我们以翻译任务为例输入 “I Love You”输出 “我爱你”。① Output Embedding先把输出词变向量理解方式和输入一样每个词被映射成一个向量用于后续计算。② Shifted Right防止模型“偷看答案”在模型训练阶段需要把标准答案整体右移一位并在开头加上起始符 相当于给模型做一个填空题题目: start 我 爱此时模型看到的是start 我 爱也就是右移一格。③ Masked Multi-Head Attention遮住未来有同学说了上面向右移一位没啥意义呀模型还是可以看到答案的一部分直接抄就可以啊起不到训练效果。此时就需要Masked Multi-Head Attention功能来遮住未预测的词防止模型从未来抄答案。也就是说它和上面的Shifted Right协同工作共同确保了模型无法“偷看答案”。比如模型要开始做这张填空卷了。它需要依次填出三个空第一个空题目是 start ______第二个空题目是 start 我 ______第三个空题目是 start 我 爱 ______④ Multi-Head Attention- “请教Encoder”Decoder 在生成新词时需要参考 Encoder 的输出。这层 Attention 是桥梁连接输入和输出让 Decoder 可以“请教 Encoder”“你生成的词和输入序列的哪些部分相关”例如翻译 “I Love You”生成 “我” 时可能主要关注输入的 “I”生成 “爱” 时可能主要关注输入的 “Love”生成 “你” 时可能主要关注输入的 “You”⑤ Linear Softmax得到下一个词的概率比如已经生成了“我爱”后面这个字是啥会有类似这样的一组概率你71%他16%它11%其它2%选概率最高的就是下一个要生成的词。最终总结通过本文的讲解我们一步步拆解了Transformer的核心机制从词向量化与位置编码奠定基础到Self-Attention与Multi-Head Attention实现多视角的语义捕捉再通过残差连接与LayerNorm保障训练的稳定性最后由FFN进行深度非线性变换以增强特征表达。Encoder通过堆叠N个相同的层来逐步深化对输入的理解Decoder的每个层则严格遵循一个更复杂的处理流程在Masked Multi-Head Attention中确保生成时不会“偷看”未来并经过Add Norm。在Multi-Head Attention即论文中的Encoder-Decoder Attention层中“请教”Encoder的最终输出并再次经过Add Norm。同样通过一个FFN网络进行深度加工并最终经过Add Norm后输出给下一层或最终的预测模块。最终Decoder的输出经由LinearSoftmax层转换为下一个词的概率分布。Transformer凭借这一高度并行、可扩展的对称性设计Encoder与Decoder层具有相似的核心结构成为当今所有大语言模型的基石完美诠释了Attention is All You Need的革命性思想。AI时代未来的就业机会在哪里答案就藏在大模型的浪潮里。从ChatGPT、DeepSeek等日常工具到自然语言处理、计算机视觉、多模态等核心领域技术普惠化、应用垂直化与生态开源化正催生Prompt工程师、自然语言处理、计算机视觉工程师、大模型算法工程师、AI应用产品经理等AI岗位。掌握大模型技能就是把握高薪未来。那么普通人如何抓住大模型风口AI技术的普及对个人能力提出了新的要求在AI时代持续学习和适应新技术变得尤为重要。无论是企业还是个人都需要不断更新知识体系提升与AI协作的能力以适应不断变化的工作环境。因此这里给大家整理了一份《2025最新大模型全套学习资源》包括2025最新大模型学习路线、大模型书籍、视频教程、项目实战、最新行业报告、面试题等带你从零基础入门到精通快速掌握大模型技术由于篇幅有限有需要的小伙伴可以扫码获取1. 成长路线图学习规划要学习一门新的技术作为新手一定要先学习成长路线图方向不对努力白费。这里我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。2. 大模型经典PDF书籍书籍和学习文档资料是学习大模型过程中必不可少的我们精选了一系列深入探讨大模型技术的书籍和学习文档它们由领域内的顶尖专家撰写内容全面、深入、详尽为你学习大模型提供坚实的理论基础。书籍含电子版PDF3. 大模型视频教程对于很多自学或者没有基础的同学来说书籍这些纯文字类的学习教材会觉得比较晦涩难以理解因此我们提供了丰富的大模型视频教程以动态、形象的方式展示技术概念帮助你更快、更轻松地掌握核心知识。4. 大模型项目实战学以致用当你的理论知识积累到一定程度就需要通过项目实战在实际操作中检验和巩固你所学到的知识同时为你找工作和职业发展打下坚实的基础。5. 大模型行业报告行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估以了解哪些行业更适合引入大模型的技术和应用以及在哪些方面可以发挥大模型的优势。6. 大模型面试题面试不仅是技术的较量更需要充分的准备。在你已经掌握了大模型技术之后就需要开始准备面试我们将提供精心整理的大模型面试题库涵盖当前面试中可能遇到的各种技术问题让你在面试中游刃有余。为什么大家都在学AI大模型随着AI技术的发展企业对人才的需求从“单一技术”转向 “AI行业”双背景。企业对人才的需求从“单一技术”转向 “AI行业”双背景。金融AI、制造AI、医疗AI等跨界岗位薪资涨幅达30%-50%。同时很多人面临优化裁员近期科技巨头英特尔裁员2万人传统岗位不断缩减因此转行AI势在必行这些资料有用吗这份资料由我们和鲁为民博士(北京清华大学学士和美国加州理工学院博士)共同整理现任上海殷泊信息科技CEO其创立的MoPaaS云平台获Forrester全球’强劲表现者’认证服务航天科工、国家电网等1000企业以第一作者在IEEE Transactions发表论文50篇获NASA JPL火星探测系统强化学习专利等35项中美专利。本套AI大模型课程由清华大学-加州理工双料博士、吴文俊人工智能奖得主鲁为民教授领衔研发。资料内容涵盖了从入门到进阶的各类视频教程和实战项目无论你是小白还是有些技术基础的技术人员这份资料都绝对能帮助你提升薪资待遇转行大模型岗位。大模型全套学习资料已整理打包有需要的小伙伴可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

张家口网站建设工作室网页游戏网站大全免费软件

Chartero终极指南:让文献阅读数据可视化起来 【免费下载链接】Chartero Chart in Zotero 项目地址: https://gitcode.com/gh_mirrors/ch/Chartero 你是否曾经在浩如烟海的文献中迷失方向?阅读了数十篇论文,却说不清自己的阅读进度和效…

张小明 2026/1/10 15:31:31 网站建设

公司网站内容编辑优秀的定制网站建设提供商

第一章:Python数据缓存的核心价值与适用场景在现代应用开发中,性能优化是提升用户体验的关键环节。Python作为一门广泛应用于Web服务、数据分析和人工智能领域的语言,其对数据缓存机制的支持尤为重要。数据缓存通过将频繁访问或计算代价高的结…

张小明 2026/1/10 18:55:14 网站建设

免费搭建网站平台wordpress 足迹地图

城通网盘直连解析技术实现与应用方案 【免费下载链接】ctfileGet 获取城通网盘一次性直连地址 项目地址: https://gitcode.com/gh_mirrors/ct/ctfileGet 城通网盘作为广泛使用的文件分享平台,其复杂的下载流程常常影响用户体验。本文介绍一种基于官方API的直…

张小明 2026/1/10 17:31:20 网站建设

网站案例上海网站建设个人接单

解决移动设备网络连接困境 【免费下载链接】gnirehtet Gnirehtet provides reverse tethering for Android 项目地址: https://gitcode.com/gh_mirrors/gn/gnirehtet 在日常使用中,我们经常会遇到这样的场景:手机没有WiFi信号,但电脑却…

张小明 2026/1/10 18:20:03 网站建设

php做的网站好不好平面设计培训网站大全

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容: 快速生成一个可交互的el-pagination原型demo,要求:1.支持实时修改分页参数并预览效果;2.提供3种不同的UI风格切换;3.包含模拟数据加载…

张小明 2026/1/11 6:14:54 网站建设

潍坊网站制作多少钱园林景观设计公司设计理念

快手视频下载终极指南:免费无水印工具快速上手 【免费下载链接】KS-Downloader 快手无水印视频/图片下载工具 项目地址: https://gitcode.com/gh_mirrors/ks/KS-Downloader 想要轻松保存快手无水印视频和图片?这款完全免费的快手下载工具能够帮您…

张小明 2026/1/11 1:23:18 网站建设